Eos Arrow GNSS Workshop with Esri ArcGIS Field Maps

Eos Positioning Systems, Esri

Meet the Presenters

Tyler GakstatterGNSS Expert,
Eos Positioning Systems

Doug MorgenthalerProgram Manager (Mobile Apps)
Esri

Jean-Yves LautureChief Technical Officer,
Eos Positioning Systems

Agenda

9:30 – 9:35	Introductions	Sarah Alban, Eos
9:35 – 9:55	GNSS Overview	Tyler Gakstatter, Eos
9:55 – 10:15	ArcGIS Field Maps	Doug Morgenthaler, Esri
10:15 - 10:35	Setting up your web map for high-accuracy data collection with Field Maps	Tyler Gakstatter, Eos
10:35 - 10:45	10-MINUTE BREAK	
10:45 – 11:15	Outdoor Data Collection Demonstration	Tyler Gakstatter, Eos
11:15 – 11:30	Outdoor Demonstration Q&A	Tyler Gakstatter, Doug Morgenthaler, Jean- Yves Lauture
11:30 – 11:35	Reviewing Tyler's Field Maps Data in ArcGIS Dashboards	Doug Morgenthaler, Esri
11:35 – 12:00	Panel Discussion, Q&A	Tyler Gakstatter, Doug Morgenthaler, Jean-Yves Lauture

Webinar Housekeeping

- Questions Enter into GoToWebinar sidebar
- Webinar Recording To be emailed tomorrow
- Handouts Agenda, Case Studies,
 Resources
- Troubleshooting Close and reboot
 GoToWebinar

GNSS Overview

Tyler Gakstatter, Eos Positioning Systems

What is GNSS?

Global Navigation Satellite System (GNSS)

The Global navigation satellite system is a collection of 100+ satellites orbiting the earth divided into multiple constellations used for precise positioning.

Positions obtained using GNSS can be as accurate as sub-centimeter.

Major Satellites Constellations:

- GPS U.S. Air Force/Space Force (USA) 31
- GLONASS Roscosmos (Russia) 24
- Galileo European Space Agency (EU) 24
- BeiDou (China National Space
 Administration (China) 44

Sky Plot – A graph often used to display satellites in view.

Using GNSS

- 106 total satellites available to anyone with the hardware capable of using the signals.
- Usage is receiver dependent. Satellites broadcast one-way signals for users to intercept and use for positioning.
- Signals from at least 4 satellites are needed to obtain a position.
- All positions determined by receiver algorithm

Accuracy Levels

• **Consumer** Grade 2-4 meters Autonomous

Recreational Grade 1-2 meters

• **Sub-meter** Grade 50cm – 1 meter Differential GPS - **SBAS** or beacon

Decimeter grade(Sub-foot) 10cm

• Survey Grade 1-3 cm RTK

Poll Question

What minimum accuracy do you need to perform your work today?

GNSS Corrections

- · SBAS (Real-time)
- RTK (Real-time)
- Post-Processing

SBAS

- · Satellite Based Augmentation System (WAAS in the U.S.)
- Capable of providing sub-meter accuracy with a high-performance receiver
- Nearly all consumer devices use this technology to some extent, but don't exploit its accuracy
- Network of base stations throughout the U.S., Canada, and Mexico piping corrections through 2 geosynchronous satellites

SBAS

RTK

- Real Time Kinematic
- · Capable of providing centimeter accuracy in real-time
- High accuracy GNSS receivers/Survey grade receivers
- Local RTK base station or RTK Network required
- Precision limited by baseline distance

RTK (Continued)

- Many states and regional governmental bodies have free/paid RTK networks (inquire with Eos)
- Rovers use the datum that the RTK base/network is referenced to
- Base station satellite support (eg. 2 constellations) can limit rover performance
- More organizations are opting to setup and operate in-house base station to take advantage of all satellite constellations

Post Processing

- Not real-time
- Capable of providing centimeter accuracy
- Any device capable of capturing raw data
- Local CORS base station required
- Precision limited by baseline depending on technique used (static vs. fast-static)

Devices Utilizing GNSS

- GPS technology highly integrated into mobile devices
- External GNSS Receivers provide greater reliability and accuracy
 - Access to a larger number of satellites
 - Ability to utilize correction sources
 - Hardware & software designed for high accuracy
 - Antennas
 - Receiver algorithms

GNSS Challenges

- Tree canopy
- Buildings
- Bridges
- Other infrastructure
- Indoors
- Not weather

GPS vs. GNSS

GPS vs. GNSS: Accuracy & Productivity

	Accuracy	Productivity	Cost
GPS		$\Rightarrow \Rightarrow$	\Rightarrow
GPS GLONASS			222
GPS GLONASS Galileo BeiDou			

GNSS Elevations

- Ellipsoidal (GPS Height) Often confuses users with a negative value.
- Mean-sea level Closer representation of the earth's surface than ellipsoid. Default output on GNSS receivers.
- Orthometric (Geoid18) Uses a Geoid model to adjust GPS height to a defined vertical datum.

GNSS Receiver Datum

- Defined by the correction source
- SBAS ITRF 2014
- RTK bases/networks in USA use NAD 1983 (2011)
- WGS1984 -> NAD 1983 (2011) can be a significant shift ~1.4 meters

Storing High Accuracy GNSS Data in ArcGIS

1. Datum Transformations & coordinate System Projections

2. Elevations

3. GNSS Metadata

Datum Transformations & Coordinate System Projections

Datum Transformations & Coordinate System Projections

GNSS Receiver -> Location Profile -> WebMap -> Feature Layer

CS Defined by Correction Source

Examples SBAS = ITRF RTK = NAD83 (2011)

User defined

3 parameters

- (1) GNSS Coordinate System
- (2). Map Coordinate System
- (3). Datum Transformation

Defined by basemap

Esri Basemaps

WGS 1984

Web Mercator

Auxiliary Sphere

WKID: 3857

CS Defined by layer

CS = Coordinate System

Example Scenarios

- 1. SBAS GNSS & Esri Basemaps
- 2. RTK GNSS & Esri Basemaps
- 3. RTK GNSS & Custom Basemap

1. SBAS GNSS & Esri Basemaps

2. RTK GNSS & Esri Basemaps

GNSS Receiver -> Location Profile -> WebMap -> Feature Layer

NAD 1983 (2011)

- 1. NAD 1983 (2011)
- 2. WGS84 Web Mercator Aux
- 3. USA CONUS And Alaska

WGS84 Web Mercator Aux Sphere NAD 1983 (2011) StatePlane Oregon North

3. RTK GNSS & Custom Basemap

GNSS Receiver -> Location Profile -> WebMap -> Feature Layer

NAD 1983 (2011)

- 1. NAD 1983 (2011)
- 2. WGS84 Web
- 3. [Depends]

Defined by custom basemap

NAD 1983 (2011) StatePlane Oregon North

*Can differ from the basemap coordinate system

Datum Transformations & Coordinate System Transformation – Take aways

- Feature Layer Publish the feature layer in your preferred coordinate system.
- 2. Location Profile Set the correct location profile determined by the GNSS correction source and WebMap basemap.
 - Changing from SBAS to RTK(or other way) requires a location profile change.
- 3. Map The map "operates" in the coordinate system of the basemap. The data is stored in the coordinate system defined by the layer.

Elevations

Poll Question

How important is it to collect accurate elevations to you or your organization?

Elevations - Z value vs. Attribute Table

Z Value

- Z-enabled layers can store the elevation of a feature in the geometry of the point or vertex
- Populated automatically by FieldMaps. Units are in meters regardless of the spatial reference.
- Not displayed by FieldMaps by default
- Stored in the same place as X & Y. Source of the coordinates displayed on the map.

Attribute Table

- User defined attribute used to store elevation data.
- Not populated by Field maps automatically by default
- *New* Use FieldMaps field calculations to populate a field of your choice with the elevation data.

VUUT	υ.δυυυυυ
Vertical Accuracy (m)	0.005000
Ortho Height (ft)	150.23

Elevations - Types of Elevations Stored

Z Value

- MSL or Orthometric height reported by the receiver in meters
- Changing the spatial reference of the layer has no impact on the value stored.

Attribute Table

- User defined attribute used to store elevation data.
- Not populated by Field maps automatically by default.
- *New* FieldMaps can use field calculations to populate a field of your choice with the elevation data.
- Units can be changed by converting meters to feet within the Arcade script.

ESRIGNSS_Altitude

- Stored in the attribute table as part of a set of special GNSS metadata fields.
- Automatically populated by FieldMaps if field exists.
- Value stored is the ellipsoid height in meters. Also known as GPS height.
- Units cannot be changed.
- This value is obtained by adding the geoid separation value to the MSL elevation.

Elevations - Z value vs. Attribute Table

Z Value

- Z-enabled layers can store the elevation of a feature in the geometry of the point or vertex
- Populated automatically by FieldMaps. Units are in meters regardless of the spatial reference.
- Not displayed by FieldMaps by default
- Stored in the same place as X & Y. Source of the coordinates displayed on the map.

Attribute Table

- User defined attribute used to store elevation data.
- Not populated by Field maps automatically by default
- *New* Use FieldMaps field calculations to populate a field of your choice with the elevation data.

VUUF	υ.δυυυυυ
Vertical Accuracy (m)	0.005000
Ortho Height (ft)	150.23

Elevations – Take aways

- 1. **Elevations** can be stored in different places and represented in different ways(MSL/Orhto/Ellipsoid).
- 2. Multiple versions of an elevation can be stored in a single feature.
- 3. The new FieldMaps field calculation tool can be used to manipulate and populate elevations into a user defined field in real-time.

GNSS Metadata

What is GNSS Metadata?

Detailed information reported by the GNSS receiver used during data collection.

- Common information includes: Source of position data Estimated accuracy reported Satellites used Averaging statistics Etc.
- Usually stored as a collection of attribute fields

GNSS Metadata – Points

- 1. A set of 20+ pre-defined attribute fields dedicated to storing GNSS metadata.
- 2. If these fields exist in a point layer during data collection FieldMaps will automatically populate them.
- 3. The purpose of these fields is to store the original data from the GNSS receiver before the data is manipulated.
- 4. Note that the latitude, longitude, and altitude information stored will differ from the point geometry.

Position source type	External GNSS Receiver
Receiver Name	Eos Positioning Systems #21600984
Latitude	45.406765
Longitude	-122.748925
Altitude	24.728000
Horizontal Accuracy (m)	0.012042
Vertical Accuracy (m)	0.015000
Fix Time	10/17/2022, 10:57 AM
Fix Туре	RTK Fixed
Correction Age	2.000000
Station ID	1
Number of Satellites	21
PDOP	1.100000
HDOP	0.600000
VDOP	1.000000
Direction of travel (°)	346.220000
Speed (km/h)	0.537080
Compass reading (°)	

GNSS Attributes – Lines & Polygons *New*

- Overall GNSS statistics stored in a set of attribute fields.
- Vertex information stored in an attached file in JSON format.
- 3. Enable this feature by creating the layer in ArcGIS Online and toggling the **Add GPS metadata fields** or Use a python notebook to enable GNSS attributes on existing line & polygon feature layers.
- 4. Next release of ArcGIS Pro will have a tool available.

Map & Layer Setup

Map & Layer Setup

Basic Steps

- 1. Create a feature class
- 2. Add the Esri GNSS attribute fields
- 3. Add the layer to a WebMap.
- 4. Setup the WebMap to display/store the elevations.

Demonstrate in ArcGIS Pro & ArcGIS Online

INTERMISSION:

Enjoy this 10-minute break while we get set up for the outdoor demonstration!

Thank you for joining!

- · Download the Handouts
- Subscribe to the Eos monthly newsletter: https://eos-gnss.com/subscribe
- Request an advanced datacollection workshop recording: https://eos-gnss.com/request-workshop-access
- On to Q&A ...

